Data Analysis Grab-Bag

percent change

NEW - OLD
 OLD

If teacher salaries were $\$ 31,500$ in 2017 and $\$ 32,000$ in 2018, we can say:

- Teacher salaries increased by $\$ 500$.
- 32000-31500 = 500
- Teacher salaries increased by 1.6 PERCENT.
- $(32000-31500) / 31500=0.01587$

It works the same way with a decrease. If teacher salaries were \$31,500 in 2017 and $\$ 30,000$ in 2018, we can say:

- Teacher salaries decreased by \$1,500.
- 30000-31500 = - 1500
- Teacher salaries decreased by 4.8 PERCENT.
- $(30000-31500) / 31500=-0.04762$

percent change of a percent

NEW - OLD
 OLD

What if we're dealing with changes to something that's ALREADY measured as a percentage?

If 25% of teachers had a masters degree in 2017 and 30% had a masters degree in 2018, we can say:

- The share of teachers with a masters degree increased by 5 PERCENTAGE POINTS.

$$
-\quad 30-25=5
$$

- The share of teachers with a masters degree increased by 20 PERCENT.
- $(30-25) / 25=0.20$

Or, if we're in a decrease situation: If 25% of teachers had a masters degree in 2017 and 18% had a masters degree in 2018, we can say:

- The share of teachers with a masters degree decreased by 7 PERCENTAGE POINTS.
- $18-25=-7$
- The share of teachers with a masters degree decreased by 28 PERCENT.
- $(18-25) / 25=-0.28$

per-capita

How many murders were there in New York City versus Austin, Texas?

To get a reasonable comparison, be sure to account for how many people live in each place!

city	homicide_rate_2017	population_2017	homicides_per_capita
New York City	290	$8,622,698$	3.4 per 100,000
Austin, Texas	29	931,830	3.1 per 100,000
Detroit	267	672,795	39.7 per 100,000

* numbers not fact-checked!

choosing your denominator wisely

How should we measure participation in an election in a particular county?
Some options:

- votes cast / registered voters in the county
- votes cast / eligible voters in the county
- votes cast / U.S. citizens who are at least 18 yrs old
- votes cast / people who live in the county

There's not necessarily a RIGHT answer. You're answering a different question with each option.

risk ratio

group	population	event		risk	
group 1		x	a	a / x	$<-$ risk for group 1
group 2		y	b	b / y	$<-$ risk for group 2

risk ratio $=($ risk for group 1$) /($ risk for group 2$)$

Risk ratios can take any value from 0 to Infinity.

- $R R>1$: group 1 has higher risk than group 2
- $R R=1$: the two groups have the same risk
- $\mathrm{RR}<1$: group 1 has lower risk than group 2

risk ratio, cont.

group	population	number died	percent died	
men	142582	4526	3.17%	$<-$ risk of death for men
women	251440	12573	5.00%	$<$ - risk of death for women

In this case, the risk ratio for women relative to men is $5.00 / 3.17=1.58$. Women are 58% more likely to die than men.

If you like the framing better, you can calculate the risk ratio for men relative to women, which is $3.17 / 5.00=0.63$. You could write this up two ways:

- Men are 63% as likely to die as women.
- Men are 37% less likely to die than women. (1-0.63 = 0.37)

risk ratio, cont.

group	population	number died	percent died	
men	142582	4526	3.17%	$<$ <- risk of death for men
women	251440	24573	9.77%	$<$ - risk of death for women

What if the numbers are further apart? Now the risk ratio for women relative to men is $9.77 / 3.17=3.08$.

Here's options for how to write about it:

- Women are about three times AS likely to die as men.
- Women are two times MORE likely to die than men.
- The death rate for women is three times that of men.

correlation

Calculate the correlation between two columns in Google Sheets with
=CORREL(A2:A,B2:B)
This will return a single value, a correlation coefficient. The value measures how close the two variables are to having a perfectly linear relationship with each other.

It will always be between -1 and 1.

- -1 : perfectly negatively correlated
- 0 : no correlation
- 1 : perfectly positively correlated

Negative correlation:

as one variable goes up, the other goes down

Positive correlation:
as one variable goes up, the other also goes up

Slope and correlation are different concepts

